
SEPR Assessment 2 | Architecture Report | 1

ARCHITECTURE
REPORT

NP Studios – Team 8

Team Members
Lucy Ivatt, Jordan Spooner, Alasdair Pilmore-Bedford, Matthew Gilmore,

Bruno Davies, Cassandra Lillystone

SEPR Assessment 2 | Architecture Report | 2

Concrete Architecture & Structure of Code
Languages & Tools Used
We chose to describe our architecture with UML (Unified Modelling Language). UML was chosen
so that it was consistent with our abstract UML diagram, allowing us to compare them easily and
identify any changes between the two diagrams. It was easy to understand and use when we
created the abstract architecture, therefore we felt it was best to use it again rather than any
other language.

We chose to use a class diagram because this diagram can be used in many stages of the
software engineering process. It is used in the analysis phase to create an abstract
representation of what we want the game to be like. It allows us to capture key features and ideas
we initially come up with. It is also used in the implementation phase as a foundation for
generating the code, to then be built upon. They are based very much on object orientation, which
is a key concept for this project, making it very appropriate.

We have shown inheritance, composite relationships and associations between the classes in our
UML diagram to ensure we completely capture the structure of the game and how each class and
object works with each other.

We used Lucidchart as a tool to create the concrete architecture. We decided to switch from
draw.io to this because some of the team members said they had used Lucidchart in the past and
found it easier to use than draw.io. Like draw.io, it can be integrated with Google Drive and
Google Docs, which is our main tool for storing and putting together our documentation for the
project. This makes it very suitable for us to use. As well as this, Lucidchart’s interface is a lot
easier to use and understand. When using draw.io we had a few issues with exporting the
diagram and creating relationships between classes, however when we used Lucidchart we didn’t
have these issues.

Class Diagram – Website Link
We appreciate that having the diagram in this document makes it difficult to view, due to the size
of it. If you would like to view it separately, it is on the website at:

https://npstudios.github.io/files/concrete_arch.png

SEPR Assessment 2 | Architecture Report | 3

Class Diagram - Image

SEPR Assessment 2 | Architecture Report | 4

Justification
The concrete architecture builds on the abstract class diagram by including new and modified
classes, as well as showing the more complex detail within each class.

Class Justification

Button For the buttons on the State screens such as MenuState, LevelSelectState etc. Handles collision between
the mouse and the button, plays its animation on hover and calls the function on a click. It’s required for
important actions such as starting the game. Related Requirements: UR_start_screen and UR_select_level

Timer Keeps track of the game time. Calls end-state if the time limit has been reached. Used to draw the time
remaining to the screen and update it and to warn when the fire station is 15 seconds from being
destroyed. Related Requirements: UR_attack_notification & FR_display_timer

Projectile Used for projectiles in the game (water drops and bullets). maxLength limits the range of projectiles so fire
truck must be near fortress to attack. The damage attribute is inherited from the Character who created
the projectile and calculates new health of its target. Projectile inherits Entity because the projectiles need
Entity’s attributes for them to appear on the screen. Related Requirements: UR_instruct_engines &
FR_enemies_destroyed

State Abstract class. Defines methods update() (updates the game logic), render() (draws the updated elements
to the screen) and dispose() (garbage collector for textures and sounds) which are implemented differently
depending on the State. They have different implementations depending on the State, so we included each
of these methods in the inherited Classes on our UML diagram.

MenuState: Needed to control buttons and play background music.

OptionState: Needed to control back button, music/sound effect toggle buttons and save their state in a
preferences file as well as playing background music.

InfoState: Used for the controls screen and credits screen. Controls back button.

LevelSelectState: Shows the buttons for the levels and their correct colour. Loads the saveData file, checks
if the user has completed level n (and sets button n to green) and then unlocks level n + 1 (and sets button
n + 1 to blue).

PlayState Controls game logic and calls required functions from the sprite and misc. packages when the appropriate
conditions within PlayState have been reached.

Modifications to Originally Included Classes
We made some changes to the attributes in Entity. We created a Vector2 position attribute to
store the Entity’s position instead of using our original positionX and positionY values to make it
simpler and more efficient. We also removed the active Boolean attribute as the way we
implemented game States made this redundant. Two extras attributes we added were texture and
Vector2 topRight (this is the top right coordinate that is calculated using width, height and
position). The texture is what will be rendered to the screen (e.g. Firetruck image) and the
topRight coordinate is used to check hitbox collision.

In the Unit class, we moved the range attribute into the Character class as we decided that
fortresses don’t need a range, they will instead spawn aliens at specified coordinates in the
ArrayList alienSpawnCoordinates. We also added the isDead() method and the addHealth(int)
method. The isDead() method is required so that we can call the end of game functions when the
fortress is destroyed or all fire trucks are destroyed, as well as removing the aliens and trucks
from the game screen when killed. This helps meet the requirement FR_end_game that says that

SEPR Assessment 2 | Architecture Report | 5

the player wins if the fortress health is depleted or they lose if all the fire trucks are destroyed. We
also wanted the fortress to be able to recover their health gradually, therefore requiring
addHealth(int).

In the Fortress class, the produceAlien() method has been replaced with an ArrayList<Vector2>
alienPositions containing the spawn coordinates. We instead put produceAlien() in the PlayState
class as it was more intuitive to initialise the aliens here.

In the Character class, we removed the destinationX, destinationY and bearing attributes.
Originally, the player would click a desired point on the map to move to, however, we have now
decided we want the player to move the fire truck by using the WASD keys, partially fulfilling the
requirement UR_instruct_engines. We decided it would be more engaging than using the mouse
for both aiming and moving the fire trucks.

In the Alien class, the waypoints attribute was changed to type Vector2 to increase efficiency and
ensure it remains consistent with the rest of the program. The update() method was added to call
the code required to update the alien in each tick of the game in the PlayState. The
nextWayPoint() method and the moveAlongGrid(Vector2) method are called in this update(),
allowing the aliens to move up and down in the game (this replaced guardRoute() from our
original UML). In the future these can be extended to allow the aliens to follow a patrol path. The
truckInRange(ArrayList<Firetruck>) is used to check if any truck is within the range of the Alien so
that they can attack them. (this replaced seePlayer() in our original UML). Additionally, we added
the attackCooldown attribute and the timeSinceAttack attribute. These attributes are to control
when the aliens can attack the fire trucks. We didn’t want the aliens to be able to attack the fire
trucks continuously, as this would make it near impossible for the player to dodge and complete
the level.

The GameStateManager class was originally called Manager. The functionality of the methods
originally mentioned in the abstract diagram have been moved to the PlayState class, occurring
as part of the update function loop. We did this because the methods and attributes, such as
onWin and onLose were about the game’s logic, which is all handled in the PlayState class. This
class initialises the game stack, has methods to push(State), pop() and set(State) the stack,
updates the game logic for the State on top of the stack while also rendering the screen for the
current state. We believe this was an intuitive model to understand, especially for future groups
who may inherit our project. It also allowed us to easily create a pause menu as the OptionState
is pushed onto the stack and then popped when the user goes back to the game, allowing them
to continue their progress and not have to restart the level as the original PlayState is still on the
stack.

New Classes
We originally thought we would only control damage through the Alien, Firetruck and Fortress
classes. However, we decided that we needed a new class, called Projectile, to handle collisions
between the bullet/water drop and the Character instances (done using the hitUnit(Unit) method),
as well as calculating its distance as explained in the table above.

Button and timer were too specific implementations to include in the original UML. We need
Button to check for collision between the mouse and the button and call the function / button
animation. Timer is used to keep track of how long the level has been played for so that the
timeLimit in PlayState can be implemented

Excluded from Original UML:
Our abstract architecture included a Pipe class for our minigame (which relates to UR_minigame),
however assessment two didn’t require this to be implemented, so we excluded it from the
concrete architecture.

	Concrete Architecture & Structure of Code
	Languages & Tools Used
	Class Diagram – Website Link
	Class Diagram - Image

	Justification
	Modifications to Originally Included Classes
	New Classes
	Excluded from Original UML:

