

Module Software Engineering Project (SEPR)

Year 2019/20

Assessment 1

Team The Dicy Cat

Members Michele Imbriani

Daniel Yates

Luke Taylor

Isaac Albiston

Martha Cartwright

Riju De

Sean Corrigan

Deliverable Software Architecture

We have chosen to represent our architecture in two diagrams which describe our game

from a runtime and static point of view and collectively describe a structure we could use to

implement our program in an orderly manner that will meet our requirements.

For our runtime model, we chose to utilise ‘draw.io’, a free diagram creation program that

has dedicated flowchart tools. The reasoning for this was that it seamlessly integrates with

Google Drive, which not only allowed us to collaborate on the same work at the same time;

but also it streamlines adding it to our website, which is created using ‘Google Sites’ and

links with Google Drive. We used draw.io to create a flowchart (see above) to model the

processes and states the game will cycle through and while we tried to stick to standards of

ISO 5807, some symbols used we could not find any official documentation for and so a full

list of symbols is provided below.

Symbol Meaning

Decision - diverts the flowchart depending on the question in the
symbol

User input - anything inputted by the user, in most cases
represents waiting for a user to press an on-screen button

Start - symbol to start a subroutine or main start.

Stop - terminates either the main program or a subroutine

Subroutine - this symbol is used to call a subroutine found
elsewhere in the program

Process - this symbol is used to process any information or call
any methods not specified in the flowchart

Display - this is used to show a major change to a screen not
inside the game loop, mostly to show the end screen or menu
screen

Arrow - this is used to show the transitions between one symbol
to the next

Similarly, our game is to be implemented in the Java language which is Object-Oriented

therefore we used the Unified Modelling Language (UML) version 2, which provides a

convenient standard to model and design the classes and methods of the program. Our

static model provides a useful insight into one possible structure of how the game could be

implemented to make sure it meets the criteria set out in the requirements. To create our

model, we used ‘StarUML’, as it provided far better tools for modelling the UML syntax than

other alternatives as well as being cross-platform to allow for group members with different

OS’s to work on the model. Also through extensions, it gives us the option for code

generation to save us setting up the basic framework of the program if we wished.

Our runtime model is a flowchart that sets out the main states the application can be in

which will provide us with a guide to make sure implementation stages are carried out

properly to meet the requirements. This is described by splitting the model into the “Intro

Sequence” and the “Game Loop” sections which allows us to focus on the logical and

functional aspects of the game while not neglecting the steps needed to provide a good user

experience.

The intro sequence section explains how we want our menus to function and the important

information they need to display, such as having a high score button and a start game

button, however in this stage many of the processes are a simple set of sequential steps

executed based on user input. Some important features determined at this stage are the

options to choose which type of engine the user wants to play and the difficulty for the game.

These features allow for a much more enjoyable and re-playable experience as different

trucks can provide different in-game experiences and the ability to change the difficulty will

allow the game to cater to a wider player base with a wider range of gameplay experience.

Similarly, the possibility of implementing accessibility features in future versions could also

be added to this section, which is a feature also discussed in the requirements.

The game loop section of the model illustrates the iterative set of steps and decisions the

program needs to make based on the current state of the game. This is done by breaking

the loop into 4 main subroutines, each representing a key process that must be carried out

during each iteration, such as “Interactions” which checks to see how close entities to each

other and if any weapons need to be fired or the engine needs to start healing and refilling.

Each iteration in the game loop more or less represents the processing needed to be done

for each frame of our game. During each loop, it also deals with the end of game scenarios

by checking if either the fire truck has lost all its lives or if all the fortresses have been

destroyed. When this situation occurs the loop ends and enters the “end game” section of

the diagram. This model, especially the game loop, is essential as whilst our static model

demonstrates the structure of our program, it doesn’t show how the game actually runs nor

how it plays.

However, what the static model does provide is a clear structure and a more in-depth look at

one possible implementation of the program. This model is useful as it sets out the classes

the program will need allowing for a simpler implementation in the future, especially when

combined with the table below which provides an additional explanation of the desired

functionality of each class.

Class Subclass of... Explanation

Kroy N/A This is the master class which will control
functionality such as the game loop and all the
subroutines marked out in the runtime model.

Entity (abstract) N/A Entity is the superclass for the majority of our other
classes. It defines fields that all generated classes
have in common, such as taking damage and the
sprite the object should be. It is abstract as no
copies of it should be initialised.

StaticObject Entity While not included in the static model, this will be

utilised for objects such as trees, buildings and
rivers that the fire engine cannot traverse. It also
provides the logic for the hitboxes which interactive
objects (such as the FireStation and Fortress) will
inherit from.

<<Interface>>
Interactivity

N/A This interface allows us to pass the
FireEngineDetect methods to the classes that need
them.

MiniGameIEntity N/A Entity used in the minigame (platformer)

FireStation InteractiveObject This allows us to make a distinction between the
two main static, interactive objects, since the fire
station will have a repair rate, unlike the fortress.

FireEngine Entity FireEngine is the blueprint for the multiple engines
in the game. It allows us to specify different stats for
each engine, such as differing water capacities, flow
rates and speeds in order to meet the requirements
of making different engines.

Fortress InteractiveObject The fortress class will allow us to populate the map
with multiple distinct fortress objects, which each
have a unique bullet dispenser. They inherit a
radius from the interactivity interface as well as a
custom amount of health points from the entity
class. Both of these characteristics will allow the
fortresses to have customisable stats as set out in
the requirements.

UFO Entity The UFO class represents the patrolling ET’s on the
map. They will patrol a given patrol route at its own
speed. When the truck enters its radius it will fire its
weapon.

Patrol N/A Stores a set of waypoints.

Bullet N/A Used to create an individual bullet object, with
unique speed, direction and damage inflicted upon
impact with the fire engine.

Pattern N/A Pattern specifies an array of bullets and the time in
between spawning them. This allows for the
assigning of unique patterns both each firing entity,
but also to each specific attack.

BulletDispenser N/A Each firing entity will have a bullet dispenser, which
specifies the location to spawn bullets from, as well
as an array of patterns that it will fire out.

