

Module Software Engineering Project (SEPR)

Year 2019/20

Assessment 1

Team The Dicy Cat

Members

Michele Imbriani

Daniel Yates

Luke Taylor

Isaac Albiston

Martha Cartwright

Riju De

Sean Corrigan

Deliverable Method selection and planning

4 Method selection and planning

4.1 Software engineering method
For the project we are going to use an agile software engineering method called SCRUM.

SCRUM technique and adaptations

SCRUM breaks development of a project into sprints which run for a set amount of time, usually 2-4

weeks. SCRUM uses a product backlog which is a set of user stories with a priority, based on

requirements which have yet to be implemented into the software. Before each sprint the product

backlog is updated to reflect changes in the project. Then the team has a planning meeting to discuss

how many features they think can be implemented and tested that sprint and move the decided on

number of user stories from the product backlog into the sprint backlog. During the sprint the team

has short, should be no longer than 15 minutes, daily SCRUM meetings where team members share

the previous days work, what they will work on that day and identify and problems they have come

across. If a team member has finished their current task they will select a new functionality from the

sprint backlog to implement based on their expertise. At the end of each sprint the project should be in

a deliverable form, at which point the team conducts a sprint review. A sprint review is where the

team demonstrates any new features added during that sprint to stakeholders and discuss whether the

requirements have been met and receive feedback on the features. Finally the team has a meeting

called a sprint retrospective to reflect on the sprint and discuss any possible improvements for future

sprints. The process then continues to iterate through sprints until the stakeholders are satisfied that

the software meets the requirements.

One adaptation we have made to the SCRUM technique is our sprints will be 1 week long. We have

chosen quite a short length of time for our sprints as the timeframe we have for the SEPR assessments

is shorter than a typical software development project would be.

In SCRUM the technical lead role can be rotated between members of the team each sprint, we have

chosen to instead rotate the technical lead role between each of the 4 assessments. We made this

decision as we want each of the assessments to have a clear direction and between some of the

assessments we will need to swap code with another group. This could require a different technical

lead, as it may lead to the use of different tools or techniques that the current technical lead is less

familiar with than someone else in the group.

Justification of SCRUM choice

In SEPR we are working in a relatively small group of only 7 people. This is one of the reasons we

chose to use SCRUM, as agile methods work better with smaller teams of developers, because this

makes it easier to hold meetings and there is less documentation overhead to manage. We also chose

SCRUM as we wanted to be able to adapt quickly to any changes in the direction of the project during

development, either from stakeholders changing the requirements of the project or any unforeseen

problems. SCRUM lets us do this because of its iteration, short sprints and regular meetings, allowing

changes to be brought up and implemented faster than in a plan driven method. The SCRUM methods

daily meetings also help team members synchronize and ensure that none of the team members are

coding the same features as each other. This would be an inefficient use of resources and would create

unnecessary code. Another reason we chose SCRUM is the sprint reviews after each sprint guarantee

that we allocate time to reflect on how effectively the group is working and adapt how we are working

accordingly. This will be much more efficient than if we waited until the end of the project to review

our method.

Development and collaboration tools

For the documentation we are using a shared google drive, so we all have access to the updated

documentation at any time in the project. On google drive we are using google docs for most of the

documentation and google sheets for the tables, such as requirements and risk assessment tables.

Another tool we are using for this project is discord, on discord we have a private server we are using

to communicate general messages about the project and organise meeting. We will also use discord to

have group call meetings, when it is not possible for group members to meet in person, allowing more

flexibility with meeting times. The version control system we are going to use is Github. We are using

Github as having a stored version history allows us to rollback to a previous version if there is a

problem with the current version. Additionally Github is a decentralised version control system which

mitigates the risk of losing versioning as each member of the project would have a local repository

with versioning. We used StarUML for the UML diagram as it simplifies the syntax of making a

UML diagram, this was helpful for our group as this was the first time we made a UML diagram. For

making our runtime model we used draw.io as it allowed multiple people to collaborate on making the

model at the same time.

4.2 Team organisation

As we are using the scrum methodology, we are also going to use the scrum development roles to

break down our team. In scrum, there are three main roles: the product owner, the scrum master, and

the development team. We decided to further break down the development team using the general

software development roles: UX/designer, Technical lead, software testers, documentation writers,

and developers.

In the scrum method, roles are highly adaptable; therefore we will be letting team members change

roles throughout the project. This is due to the structure of scrum- someone could work in the

development team for one sprint and easily change to a software tester for the next sprint. Allowing

team members to change roles for each sprint is beneficial for this project as it allows everyone to try

out the different roles to see where they work the most effectively. It will additionally prevent

members from getting too fatigued with a single role and keep motivation high.

We also realise that is more efficient to have the whole team (or at least most of the team) work on a

certain aspect, e.g. software testing, at once instead of giving that task to only one or two people. We

have therefore given multiple roles to multiple people.

Michele was designated early on as the scrum master/ project manager. This is because of his

strengths in scheduling, communication and organisation. Two other people in our group also showed

an interest in leadership; for future assessments we have kept in mind that this role will be flexible.

The technical lead is a good fit for Riju given his prior experience making games and programming

with Java. He also expressed that he did not want to do a lot of documentation, meaning he can focus

more on the coding.

Given his propensity for leadership as well as his ability to come up with design ideas, we have

decided that Dan should be the UX lead. Mic, Martha and Sean will also focus more heavily on UX.

Due to the amount of work that needs doing, everyone in the group has agreed to do a fair share of

both coding and documentation. For now we have placed everyone on the general development team

and documentation team on top of any specific roles they may have. Furthermore, everyone is going

to participate in the software testing towards the end of Assessment 2.

4.3 Project plan
The plan for the remaining assessments is detailed in the following Gantt charts, which are also

presented in full on our website. We used Gantt charts as they allow for dependencies and the

critical path to be easily seen. We used PlantUML to create the Gantt charts; favouring this

software due to its shallow learning curve and a high level of adaptability. The plans for

assessments 3 and 4 are still quite simple; the major tasks in these plans have not been broken

down like they have in assessment 2. Given that these assessments are still far in the future, any

detailed plan we were to make would likely be disregarded as our understanding of the necessary

tasks and timescales change. Assessment 2, on the other hand, requires a full plan with a

breakdown of the architecture and implementation tasks. We do however understand that the

assessment 2 plan is also going to be subject to change.

