

Module Software Engineering Project (SEPR)

Year 2019/20

Assessment 1

Team The Dicy Cat

Members

Michele Imbriani

Dan Yates

Luke Taylor

Isaac Albiston

Marta Cartwright

Riju De

Sean Corrigan

Deliverable
Requirements

(Requirements Engineering Process Introduction and Requirements Tables)

In our context, we identified that there is an important distinction to be made between:
 Direct Stakeholders → as the customer who requested the game;
 Indirect Stakeholders → as the students in our cohort, prospects students in open-days and

their parents, who will eventually play and assess our game.

This distinction is a very important one to make, as some customer requests (from the direct

stakeholder) might conflict with the users’ needs (indirect stakeholders). As a matter of fact, some of

the initial features thought by the team were, as we would later discover, clashing with the client’s

requirement e.g. one of the early ideas for the project was (the development of) a slow-paced, low-

rewarding but coding-efficient turn-based strategy game, which, however, would have considerably

diverged from the client’s intention of showcasing it to students and parents during open days: hence a

fast paced, high-rewarding style of gameplay was agreed to be more suitable.

The team extracted the SSON for the project from the product brief provided [1], which was

subsequently agreed with the customer to be: “Build a single-player game that involves moving fire

engines between the Fire Station and the ET fortresses, avoiding ET patrols on the way, and attacking

ET fortresses when the fire engines’ water cannons are within shooting range’’.

In the early stages of the process the team had a brainstorming session, which served us to give initial

high-level, yet clear and detailed nonetheless, direction and shape to the project and to define what

features the final product would and would not have, which were then proposed and checked with the

customer. The team then met the customer, who did not put forward any particularly restricting

additional user requirements. Among the additional user requirements proposed, we report cross-

platform development, controller extension, audience-targeted development and budget and hardware

constraints; the client also provided a clear prioritisation map of the aforementioned features.
Following the meeting, the team discussed and modified adequately the initial ideas -identifying and

removing clashes when found- and created several high-level prototypes of the product. The way User

requirements were elicited from the product brief was straightforward: the team identified and

extracted the key information from the document in a systematic way i.e. find and clarify facts about

the game, verify them against the customer’s requests, turn them into requirements and finally record

them in the User Requirement table.
We then proceeded to deduct Functional and Non-functional requirements from the user

requirements by following the steps in IEEE’s [2] 6.3.1.1 section: the literature provides a thorough

explanation to “how the inputs to the software product should be transformed into outputs”. However,

the team agreed that, considering the nature of this SEPR project, many of the steps and details are not

applicable -or, in some cases, it is not advisable to do so- to our context: an instance of this is the

6.3.1.6.1 Data Base section or the five categories (Name, Mnemonic, Specification number, Version

number and Source) proposed in 6.3.1.5.3 Software Interfaces. Furthermore, the submission

constraints of the assessment (max 3 pages) led us to the decision of omitting some potentially

polluting details additions such as the capacity section in 6.3.1.2 Performance Requirement.

Throughout the whole process, the team paid great attention to “not describe any design, verification,

or project management details, except for required design constraints.” Moreover, great emphasis was

put into adhering with the fundamental ethical principles that apply to a computing professional's

conduct: after completing the requirements tables, the team cross-checked the accuracy and

faultlessness by using the ACM Code of Ethics [3]. We unanimously agreed that the result obtained

was in line with the standards. The team also understood the importance of observing the basic rules of

conduct presented in the BSC Code of Conduct [4] in order to guarantee a suitable environment for

team-work and avoid clashes between team member throughout the course of the whole assessment.

This not only helped to, but it also allowed the team to have a broader understanding of what working

in a multi-faceted and diverse team is about.

For the Use Cases creation process, the team followed the advice presented in both textbooks “Writing

Effective Use Cases”[5] and “UML Distilled”[6], but decided to not precisely and systematically stick

with their guidelines, as there were many low-level ramifications and details (such as, for instance,

the subdivision of use cases into Sea-level, Fish-level and Kite-level) that did not provide any more

relevant information for our project. The format used, as suggested in the lecture, is text-based, as this

turned out to be a straightforward, quick, reliable and unambiguous way of listing all the necessary

information and did not require the use of an additional software such as, for example, yUML.

References:
[1]University of York, Computer Science Department, “Product Brief: Kroy”,
https://vle.york.ac.uk/bbcswebdav/pid-3396020-dt-content-rid-

8681478_2/courses/Y2019-006404/product-brief%281%29.pdf

[2]IEEE Guide for Software Requirements Specifications. New York, USA: IEEE, 1984.

https://ieeexplore-ieee-

org.libproxy.york.ac.uk/stamp/stamp.jsp?tp=&arnumber=278253.

[3]ACM Code of Ethics, https://www.acm.org/code-of-ethics, ACM Code 2018 Task

Force, June 2018.
[4] BCS Code of Conduct, https://www.bcs.org/membership/become-a-member/bcs-code-

of-conduct/, BCS, The Chartered Institute for IT, 2019.

[5]Cockburn, Alistair. Writing Effective Use Cases. Boston; London: Addison-Wesley,

2001. Print. Agile Software Development Ser.

[6]Fowler, Martin. UML Distilled: A Brief Guide to the Standard Object Modeling

Language. 3rd ed. Boston: Addison-Wesley, 2004. Print.

https://vle.york.ac.uk/bbcswebdav/pid-3396020-dt-content-rid-8681478_2/courses/Y2019-006404/product-brief%281%29.pdf
https://vle.york.ac.uk/bbcswebdav/pid-3396020-dt-content-rid-8681478_2/courses/Y2019-006404/product-brief%281%29.pdf
https://ieeexplore-ieee-org.libproxy.york.ac.uk/stamp/stamp.jsp?tp=&arnumber=278253
https://ieeexplore-ieee-org.libproxy.york.ac.uk/stamp/stamp.jsp?tp=&arnumber=278253
https://www.acm.org/code-of-ethics
https://www.bcs.org/membership/become-a-member/bcs-code-of-conduct/
https://www.bcs.org/membership/become-a-member/bcs-code-of-conduct/

SYSTEM REQUIREMENTS

FUNCTIONAL REQUIREMENTS

ID DESCRIPTION USER REQUIREMENTS

SFR_ALLOWED_TO_REPAIR

Health Point drop by more than 1 shall lead to

Fire-engines able to return to the station and

repair UR_FIRETRUCK_REFILL

SFR_ALLOWED_TO_REFILL

Water Tank points dropping by 1 shall lead to

Fire-Engines able to return to station to refill UR_FIRETRUCK_REPAIR

SFR_REFILL_OVER_TIME Fire engine refills over time UR_FIRETRUCK_REFILL

SFR_REFILL_CONSTANT The refill rate shall be constant UR_FIRETRUCK_REFILL

SFR_REPAIR_OVER_TIME Fire engine repair over time UR_FIRETRUCK_REPAIR

SFR_REPAIR_CONSTANT The repair rate shall be constant UR_FIRETRUCK_REPAIR

USER REQUIREMENTS

ID DESCRIPTION PRIORITY

UR_FIRETRUCKS_UNIQUE_SPEC Each Fire Engine must have a unique spec SHALL

UR_FIRETRUCKS_REFILL Fire Engines need to return to the Fire Station to refill SHALL

UR_FIRETRUCK_REPAIR Fire Engines need to return to the Fire Station to repair SHALL

UR_ET_UNIQUE_SPEC Each ET fortress must have a unique spec SHALL

UR_ET_IMPROVEMENT Over time the ET fortresses improve and they become harder to flood SHALL

UR_FIRETRUCK_MIN_START There should be at least four Fire Engines SHALL

UR_ET_MIN_START

There should be at least six different ET fortresses based (possibly loosely)

on real locations in York SHALL

UR_WIN_CONDITION The game is won when all ET fortresses have been flooded SHALL

UR_LOSS_CONDITION The game is lost when all Fire Engines have been destroyed SHALL

UR_ET_DESTROYS_STATION

After a fixed amount of time following the first attack to an ET fortress, ETs

figure out where the Fire Engines are coming from and destroy the Fire

Station. From that point onwards, your Fire Engines cannot be repaired or

refilled SHALL

UR_MINIGAME

There should be an embedded mini-game, completely different in style

from the main game, but aligned to the theme of the main game SHOULD

UR_DIFFICULTY_LEVEL The game has different difficulty levels for different types of audiences MAY

UR_CONTROLLER The game could have controller compatibility MAY

UR_HIGHSCORE The game should have a record of high scores MAY

UR_MOBILE The game may be cross-platform transferable MAY

UR_INSTRUCTIONS

The game should have a function at the beginning of the game to explain

how it works SHOULD

UR_GAME_TIMER

The game's length should be decided keeping in mind the target audience

i.e. open days attenders, and is based on the timer that is triggered

following the first attack to an ET SHALL

UR_TARGET_AUDIENCE

The game should not have a specific target audience. i.e. Cater to different

levels of ability. SHALL

UR_COLOUR_ACCESSIBILITY

The game may have a feature for different colours schemes for enhanced

accessibility e.g. high contrast colours MAY

SFR_CANCEL_REPAIR

The repairing can be stopped at any point

during the process UR_FIRETRUCK_REPAIR

SFR_CANCEL_REPAIR_RESPONSE

"Fire engine is repairing" shall lead to "Cancel"

option. i.e. Leaving the station. UR_FIRETRUCK_REPAIR

SFR_CANCEL_REFILL

The refilling can be stopped at any point during

the process. i.e. Leaving the station. UR_FIRETRUCK_REFILL

SFR_CANCEL_REFILL_RESPONSE

"Fire engine is refilling" shall lead to "Cancel"

option. i.e. Leaving the station. UR_FIRETRUCK_REFILL

SFR_MOVE_WHILE_EMPTY

The fire engines shall be able to move even

with empty water tank UR_FIRETRUCK_REFILL

SFR_MOVE_WHILE_DAMAGED

The fire engines shall be able to move with HP

< 100%. UR_FIRETRUCK_REPAIR

SFR_ET_IMPROVE_CONSTANT

The ET fortresses shall improve by a constant

amount of HP and damage. UR_ET_IMPROVEMENT

SFR_ET_IMPROVE_

The ET fortresses shall increase in HP and

damage dealt over time.

SFR_HEALTH_BAR

The health bar of the fire engine that is being

used should be visible at all times. It should be

visual rather than jargon to be understandable

to all audiences. UR_FIRETRUCKS_REPAIR

SFR_WATER_SUPPLY_BAR

The amount of water currently contained in the

tank of the fire engine that is being used should

be visible at all times. Again, similar to the

health bar should be visual and avoid jargon. UR_FIRETRUCKS_REFILL

SFR_ET_LOCATIONS_NOT_CHANGEABLE

The locations of the fortresses cannot be

changed by the user UR_ET_MIN_START

SFR_FIRETRUCKS_STATS

The user will choose the type of fire truck at

the beginning of the game UR_FIRETRUCKS_MIN_START

SFR_FIRETRUCKS_SELECTION

The user will have four trucks (lives) to

complete the game UR_FIRETRUCKS_MIN_START

SFR_DESTROYED_TRUCKS

The user cannot repair trucks that have already

been completely destroyed UR_LOSS_CONDITION

SFR_MINIGAME

The minigame should be a platform-based

game inspired by SuperMario and Flappy Bird UR_MINIGAME

SFR_ETS_DESTROY_STATION

The ETs cannot be stopped from destroying the

Fire Station UR_ET_DESTROYS_STATION

NON-FUNCTIONAL REQUIREMENTS

ID DESCRIPTION USER REQUIREMENTS FIT CRITERIA

SNFR_INSTRUCTIONS

At the beginning of the game, the user

should be prompted with the game

instructions UR_INSTRUCTIONS

Instructions should

cover all features of

the game and how

they work

SNFR_TIMER

The game should be long enough to allow

the user to complete it in a reasonable time

withouth reaching boredom UR_GAME_TIMER

The game should

be approximately

15 minutes long

SNFR_TIME_TO_DEFEAT_ET

The ET fortresses should take increasingly

more time to flood and defeat UR_ET_IMPROVEMENT N.A.

SNFR_TARGET_AUDIENCE The game should have the features that UR_TARGET_AUDIENCE Game should be

make it playable by a wide variety of users,

including users with no previous gaming

experience

easy, fast-paced,

entertaining and

fun enough to be

SNFR_JARGON

All user-facing messages shall be in plain

English and will not use technical video-

games jargon UR_TARGET_AUDIENCE N.A.

SNFR_HIGHSCORES

The game should support the High Scores

feature UR_HIGHSCORE

The game should

have a local record

of the top high

scores

SNFR_ACCESSIBILITY

The game may have a way to modify the

colour pallet to enhance accessibility

UR_COLOUR_ACCESSIBI

LITY N.A.

SNFR_MOBILE

The game (style, movement, map

visualisation) should be designed with the

aim of developing a mobile version UR_MOBILE N.A.

CONSTRAINT REQUIREMENTS

ID DESCRIPTION RISKS ALTERNATIVES

ENVIROMENTAL

ASSUMPTIONS

SCR_RUNNABLE

Game shall be runnable on

every computer i.e. low-end

computer

User's computer not

able to support game N.A.

User's

computer can

run the game

SCR_CONTROLLER

The game should be playable

both with keyboards and

controller

User does not have

controller

Use keyboard

instead

User possesses

a keyboard

SCR_NO_BUDGET The project's budget is 0

Some technologies,

software, libraries

might have a price to

be accessed and used

Ask for University's

financial support or

change the

technology used

All technology

used is free and

accessible

SCR_CLIENT_MEETING

The team should not assume

that the client is available

every week for meeting, and

time between meeting

request and date of meeting

might vary

Client is never

available for meeting

and/or client response

time is delayed

We can contact the

client by email to

specify certain

functions the game

should include.

Client will be

available at

least once a

week to ask

questions about

the game

SCR_GROUP_MEETINGS

The team should be able to

regularly meet up to agree on

design decisions and collate

work done.

Group members are

not able to attend.

Set up a voice chat

channel to allow for

all members to

discuss development

when they are free

for a voice chat.

Each group

member has a

viable way to

voice chat.

