

Module Software Engineering Project (SEPR)

Year 2019/20

Assessment 1

Team The Dicy Cat

Members

Michele Imbriani

Daniel Yates

Luke Taylor

Isaac Albiston

Martha Cartwright

Riju De

Sean Corrigan

Deliverable Risk Assessment and Mitigation

For this part of the project, the team has relied heavily on the book “Software Engineering, Global

Edition”[1] for the risk elicitation process. The textbook provides a detailed and in-depth description of how

to effectively identify, assess and mitigate the potential risks involved over the course of a software

development/engineering project. We did however also make extensive use of the lecture slides alongside the

book in order to get as full a view on risk assessment as possible.

The tabular format used for the risk assessment is the one shown in the lecture slides. Given our small team,

relatively long period of development and fixed deadline/budget, we concluded that this was the most

concise and detailed way in which to represent the potential risks.
A fundamental part of the risk assessment was the classification of likelihood and severity for each risk. We

decided to use the 3-value scale for both: Low (L), Medium (M) and High (H). This allowed us to identify

which risks would be more likely to have a large impact on the project but also did not go into too much

detail such that the risk assessment would take a long time with very minimal returns. Furthermore, as

suggested by Boehm in the textbook “Software engineering” [1], we identified the top 5 risks to which the

team will pay more attention than the rest (the literature suggests to identify a “top 10” risks, but it assumes

the scale of the project to be bigger than what it actually is in our context: we therefore decided to reduce

from 10 to 5). These are coloured in red in the table.

The factors we took into account when assessing the severity of a risk were multiple, but for the most part

they revolved around how confident each team member felt in their skills for solving the issue at hand in a

hypothetical scenario in which the risk has become a reality i.e. how well would the team be able to cope

with the problem if a risk turned out to be true? The likelihood of a risk, on the other hand, had more to do

with how much it is related to this SEPR project: it is unreasonable to classify a risk such as “The hardware

on which the game is expected to be run does not support its size” as high likelihood, given that the aim of

this SEPR project is to be specifically run on low-end computers, while it would also be equally unwise to

categorise, for instance, “The size of the software is underestimated “ as low likelihood, considering that

most of the team members have little to no experience in video-game development.

In our risk assessment table, we have assigned a single member of the group to be the owner of each risk.

The team unanimously agreed on the importance of assigning each risk to one owner only, as it gives us a

clear indication of where each group member should focus their attention more. We assigned the risk

ownership based on the type of the risk, as this allows each group member to get accustomed to dealing with

risks of a specific type. The risks were, as a matter of fact, divided into 6 categories, namely Requirements,

Estimation, People, Technology, Organisational, Tools, in order to both facilitate the risk ownership division

and to have a clearer idea of which specific area of the project requires more attention and carefulness than

others.

Finally, for each risk we have identified a mitigation strategy. To identify these strategies, we had a group

meeting where we discussed the possibilities and entered the agreed upon mitigation in the risk table. In this

meeting we used examples given in the lecture slides and in the “Software Engineering, Global Edition”

book to help us formulate our risk mitigations.

References:
[1] Sommerville, Ian. Software Engineering, Global Edition, Pearson Education

Limited, 2016. ProQuest Ebook Central,

https://ebookcentral.proquest.com/lib/york-ebooks/detail.action?docID=5185655.

https://ebookcentral.proquest.com/lib/york-ebooks/detail.action?docID=5185655

ID Type Description Likelihood Severity Mitigation Owner

R1 Requirements Changes in the project
requirements

H L Agile, SCRUM software
development method allows
for quick changes to the
requirements

Michele

R2 Requirements Adding unnecessary
features

M M Before implementing any
features check they can be
traced to a requirement

Martha

R3 Requirements Not resolving a requirement L H Regularly meeting with the
stakeholders to confirm the
software meets their
requirements.

Michele

R4 Requirements Misinterpreting a
requirement

L H Writing requirements with
enough detail to be clear and
demonstrating features to the
customer

Michele

R5 Estimation Time required to develop
the software is
underestimated

H M Generously allocate time to
each task in order to minimise
the risk of running out of time

Martha

R6 Estimation The rate of the defect
repair is undefined

H M Rank tasks' priority by
difficulty so that most
requiring tasks can be
assigned to more proficient
members

Dan

R7 Estimation The size of the software is
underestimated

H M Generously allocate time to
each task in order to minimise
the risk of running out of time

Dan

R8 People The task assigned to a
developer cannot be
completed because of
his/her's lack of skills

M L Rank tasks' priority by
difficulty so that most
requiring tasks can be
assigned to more proficient
members

Sean

R9 Technology Unable to find information
needed on how to
implement a wanted
function

L L Refere to literature or change
the underlying mechanisms of
the feature

Riju

R10 Organizational The organisation is
restructured so that
different managment are
overseeing the project

H L By keeping up with clear
documentation, change in
leadership should be smooth
through continuation of
previously laid out plans.

Luke

R11 Organisational Organisational financial
problems force reductions
in the project budget

M L While we do not have a set
budget for the project, any
key financial requirements we
have that we can justify can
be requested from the
University.

Luke

R12 People Key developers are ill or
unavailable at critical times

M H Integrate time into our plan so
that certian people are able to
take on extra tasks if required

Sean

R13 Tools Software tools or libraries
are inefficient,
inappropriate or do not
work as expected

M L Test the libraries we will
implement on our target
devices to ensure that it runs
as expected.

Isaac

R14 Technology The hardware on which the
game is expected to be run

L L Avoid implementation of
computing-demanding

Riju

does not support its size features and periodical
testing of hardware-
compatibility

R15 Technology Relying on a
library/libraries that prove
to be missing a key feature
needed for the project later
in development.

L H Thoroughly research any
libraries/APIs that will be
heavily relied on to ensure
they conform to details laid
out in the software
architecture and
requirements.

Riju

R16 Technology Unexpected bugs/issues
with the game due to
different members working
on seperate sections of the
program.

L M Ensuring team members
communicate and follow the
architecture. Create efficient
unit tests to pre-empt and
isolate any errors.

Riju

R17 Estimation Failure to meet individual
assessments deadlines

L H Focus on SCRUM principles
of working sprint by sprint,
focusing more on the current
assessment

Dan

R18 Technology Failure to effectively select
an efficient code during
code-swapping phase of
assessment

M H Thorough review of each
team's code and work
towards an unanimous team
decision before picking

Riju

R19 Estimation Final product is not as
efficient as estimated due
to undefined reasons

L H Dan

R20 Estimation Too much dependency of
features refraining
software's development

M M Structure software's
architecture trying to avoid or
minimise possible
compromising features
dependencies

Dan

R21 People Misunderstandings
between team-members on

M M Use of clear and technical
gergon, emphasize
communication between
team-members

Sean

R22 People Team-member's
personalities might clash
with each other in critical
decision-making moments

L L Trying to always make
decision prioritising the
team's best outcome instead
of individual. When needed,
refere to code of ethics to
solve disputes

Martha

R23 Requirements Complaints from client that
contradict initial
requirements

L L Clear and precise
specification of requirements
at beginning of project

Michele

R24 People Reluctance of team
members to adopt
new/unfamiliar
technologies decided by
the team

L L Work towards a unanimous
decision of what software and
tools to use throughout the
course of the assessment

Sean

R25 Technology Software testing structured
in a faulty way, producing
wrong results and
compromising project's
succesful development

M H Careful development of test
units, crosscheck of tests
units between team-members

Riju

R26 Technology Storage tools failure L H Multiple versions of the same
files on every team-member's
device

Riju

R27 Estimation Minigame development
turns out more time and
effort demanding than
expected

M M Choose a style for the
minigame that every team
member is comfortable with
doing with relative ease:
platform-based game (like
supermario/flappy bird)

Riju

