
SEPR Assessment 2 | Software Testing Report | 1

TESTING REPORT
NP Studios – Team 8

Team Members
Lucy Ivatt, Jordan Spooner, Alasdair Pilmore-Bedford, Matthew Gilmore,

Bruno Davies, Cassandra Lillystone

SEPR Assessment 2 | Software Testing Report | 2

Testing Methods and Approaches
In this section we will cover the methods and approaches the team has taken to tackle testing our
game thoroughly. In general, as mentioned in the other reports, we split our team into speciality
sub-groups. These sub-groups were to focus on specific parts of the game and the project. Thus,
our testing strategy applies to those in the sub-group, with frequent discussion with the
development team. However, this all starts with a strong test strategy, which is essential for a
well-structured testing process.

For our strategy the whole team worked together to decide which roles go to whom; what
platforms and frameworks are to be used; the risks and mitigation; and the schedule that testing
will run on. The schedule was complex due to the ideal tests practice - which is to write tests
before implementation. This allows for the development team to test their code to ensure it
follows the overall game requirements. However, we did not want the development team to have
to wait for platforms and frameworks to be integrated and then tests written. We decided that the
tests will be created alongside the code developed. The platforms and frameworks that we used
for the testing were JUnit and Mockito. JUnit is a very popular framework that is robust and well
tested. This gave the group assurance that the passing and failing unit tests were not flukes.
Then for mocking we decided to use Mockito, it is widely and professionally used, which gave the
team confidence. For the risks, the largest was the time to learn testing to an effective level. Not
all members of the testing team had done Unit testing, and none had done mocking. The only
mitigation to this was for the testing team to take a week to focus on honing their testing skills.
After, we came back and started working on the testing the game. Another risk was new,
unexpected, code that could be implemented by the developer team. This would be managed via
two methods; regularly meetings between the two teams, and for every pull the testing team
member did - to read the changes made through IntelliJ’s merge system. Overall the testing
strategy worked well with the small team that we had for testing.

The overall goal of the testing team was to ensure all requirements of the game worked as
intended. Thus, the functional testing approach was appropriate, since it allowed us to directly
check these requirements. This is done through creating input data based on the functions
purpose, entering it, and checking if the output is as intended by comparing to the expected
outcome. This is possible by using JUnit and Mockito which allows the team to test outcomes in
an environment that is solely for a specific function. The key is to isolate each requirement,
ensure it is testing only one thing, make it repeatable, fast, timely and self-validating (this is
where JUnit is especially useful). Then to ensure all possible combinations and types of data is
accounted for, we used boundary and parameterised testing. This is where we see the boundary
of input data for a function, for example, and test around said boundary. We test right outside the
boundaries, on the limit, just inside and an average value. This is not needed for all functions, this
would take too much time, but it is crucial for functions that are vital to the game.

This testing, in general, took a structural (white box) testing approach to all its testing. Since there
was overlap with the testing team and the development team, this was a given. However, that
was not the only reason, as there are many advantages to this testing method compared to ‘black
box’ testing. First and foremost, it allows for very concise and thorough testing, due to the team
being able to analyse the code. We often find ourselves trying to break the code with our testing,
finding cases that the development team did not cover for. This testing method also allowed the
team to start the testing process for some functions that the development team had not written
code for yet. While this testing can be more resource intensive, in terms of time and people
required to cover the needed tests, it does allow for a strong tested code base.

SEPR Assessment 2 | Software Testing Report | 3

Brief Report on Actual Tests
In this section we will be covering some concrete examples of our testing, explaining what they
do, cover and why it is useful. We will also go over the results produced by said tests, the overall
statistic of testing in the project. Then, discussing what in the testing part of the project could be
improved in the next iteration, why they would be useful, and what we think went well and should
continue.

First, we will cover the class/sprint testing that was completed on the game. This was most of the
testing done by the team and is the most comprehensive. This was decided since this part was
where libGDX had the least control, thus had the biggest chance for errors and bugs. The most
challenging aspect of this set of testing, was the ever-changing code base. This caused the test
team to need to rewrite tests, move tests, change constructor orders, etc. While the code base
changes did result in a cleaner product, it did limit the amount of testing that was created before
said changes to stay after.

We started testing from the top of the UML Class Diagram, with the Entity class, a simple class
with no complex functions. It is, however, the class that all other in-game objects are extended
from, so it was imperative to test it thoroughly and correctly. One of the biggest areas of concern
was the setPosition() function, as it is called extensively through the game, from setting objects in
the game, positioning graphics, and moving the Characters. Moving Characters being so vital to
the came further emphasised how critical the Entity class is.

The tests we ran on setPosition() where to check both basic functionality and niche cases. For
example, test_1.1 tests the standard change of position with an increment of 100 by 100. This
test has a standard input data to ensure the function does as described for regular data inputs.
We also check if getTopRight() of the test entity was in the correct position, since this will be
important when implementing the collision detection function and attack range calculations. Then
we also tested a boundary data input for the setPosition() function, with testing the bottom of the
map, (0,0). This test, test_1.2, was to ensure that there were no unexpected outputs with a ‘non-
regular’ input. We tested out of boundary values as well, such as negative numbers, since we
cannot allow Entities outside of the allotted game board space. To check we used a more
primitive method of a try catch since most team members understood this better than Lambdas,
which are supported in JUnit5. Most of these tests passed by the end of the project, however the
negative number check was a failure. This is because the implementation of catching negative
numbers would cause the game to crash. Due to later implementation, Projectiles would end up
going to negative position before we called dispose() on the object. In the next iteration the test
should not expect an Exception but test if the objects are disposed when in any range outside of
the game.

The example above took a boundary testing approach, in this approach we used a structural
testing. As mentioned above, most, if not all, of our testing was done in a structural testing
approach. For example, in the testing for the Unit class, in test_2.5.2 , we test the capping of the
amount of damage a Unit takes. For this we knew the code behind takeDamage(), which in result
used setCurrentHealth(). Through this, we knew that setCurrentHealth() allowed for a negative
health value. This in turn would break the isDead() function which initially checked if
currentHealth was equal to 0 and if it was return true. Since it only checks for ‘0’, we know having
it go negative would cause the Unit to be alive when isDead() is called. With this theory made
through analysing the code directly, we devised a test to ensure this would cause an error. Then
once this failure was fixed this test can ensure that the fix was implemented correctly.

There were cases where the testing team ran into problems, where we did not know how to test
certain requirements with the previous method, including UR_start_screen, UR_select_level,
UR_pause, and UR_music. To test these User Requirements, we conducted manual tests in which

SEPR Assessment 2 | Software Testing Report | 4

we ran through the game, and manually checked that these User Requirements were working. For
example, with UR_music, when manually testing the music, the music started when opening the
game and continued while moving states as required. The music also speeds up at 15 seconds
left in the game, to encourage a sense of urgency in the user. However, when trying to mute the
game we found and fixed a bug that caused the music not be muted until exiting the settings
page. This would clearly confuse the user who is trying to mute the music, but it is not stopping.

Another key example where manual testing ensured User Requirements were met is
UR_level_select. We needed to test that level select would ‘unlock’ the new level when the
previous level was completed, and not when failed. We ran through the game several times, all
with different cases to check all variance. We had a test that ran through the whole game,
passing each level, and here the level-select worked perfectly. Then, we passed the first level but
then failed the second to ensure the last level would not unlock, which it did not. Then we failed
the levels in different ways (e.g. time ran out or fire trucks destroyed) to ensure in all cases of
level failure, only the currently unlocked levels were available. We then quit the level partway
through which is a niche test to make sure no levels were unlocked in that case. After testing
these cases, level selected worked exactly as needed and described in the User Requirements.
The team felt confident in these testing methods, however for next testing iteration we wanted to
find more concrete testing states, in which we could use mocking.

A vital aspect to unit testing is isolating the test to only the unit that is under interrogation. As the
results of said tests need to indicate a failure, error, or bug in the unit and not its dependencies.
Our team understood the principles but had a tough time using mocking and identifying correct
units to mock over standard JUnit tests. However, near the end, a very key and new function had
a large dependency. The truckInRange() in the Alien class will check if a Firetruck instance is in
range and sets the aliens target accordingly. The method takes an ArrayList<Firetruck>, which it
then loops through and checks if any are in range and sets the Aliens target to the instance with
the lowest health.

This method has a large dependency on the Firetruck class, since it calls Firetruck’s inherited
methods such as getPosition(), getCurrentHealth(), and getTopRight(). We did not want a possible
failure in any of these to cause a failure in the tests we needed to write. Thus, we mocked the
Firetruck class using Mockito. Using when() and thenReturn() allowed the team to force a
response from Firetruck method calls. For example, for test_7.1.1 (Figure 1: test_7.1.X), we
mock the responses for getPosition(), getCurrentHealth(), and getTopRight(). The mocked values
were to ensure the Firetruck instance is in range of an Alien instance, to allow it to be set as the
new target. Then for the other test of truckInRange(), we mocked Firetruck again to ensure it was
out of range of an Alien instance test_7.1.2, and to ensure another Firetruck instance was the
current target and had no health (Test ID: 7.1.3). All these mocked tests passed without the
dependency of the Firetruck class, ensuring it works as the game needs it too. If these tests were
to fail in another iteration of development, the testing and development team can be sure it is
because of a fault if truckInRange() and not in the Firetruck class.

Overall, the testing was fairly complete, with most line coverage over 60% and method coverage
as well. With some classes being lower due to mostly being getter and setter type functions. We
were lacking in tests for the State classes (other than manual) which we would have wanted to fix
in the next iteration, with more mocking driven testing. The testing done by the team gave the
game a more concrete code base that will satisfy hopefully satisfy the client.

Testing Design and Evidence of Testing
View all of our testing material: https://npstudios.github.io/testing/

SEPR Assessment 2 | Software Testing Report | 5

Appendix
Figure 1: test_7.1.X

	Testing Methods and Approaches
	Brief Report on Actual Tests
	Testing Design and Evidence of Testing
	Appendix
	Figure 1: test_7.1.X

