
Test Documentation
This assessment (4):

Anything added will be highlighted in green like so: EXAMPLE

Anything removed will be crossed out and highlighted in yellow like so: EXAMPLE

 Assessment 3 group:
 Anything added will be highlighted in yellow like so: EXAMPLE
 Anything removed will be crossed out and highlighted in yellow like so: EXAMPLE
 Assessment 1 & 2:
 No colours

Play Testing

Test
ID

Description Requirement ID Description Logic
Test
Result

1 GameShouldRunTest SCR_RUNNABLE The game should run
without crashes

Pass

2 FireTruckShouldAttackIfInRa
ngeTest

SFR_FORTRESS_DESTROY Detecting an ET fortress in
the firetruck's range should
trigger the firetruck to start
attacking it with a water jet

Pass

3 FortressShouldGetDestroyed
Test

SFR_FORTRESS_DESTROY After fatally damaging an ET
fortress, it should be
marked as 'destroyed'

Pass

4 FortressShouldAttackIfInRan
geTest

SFR_FORTRESS_ATTACK
UR_FORTRESS
UR_FUN

Entering the range of an ET
fortress should trigger the
fortress to start attacking

Pass

5 FireTrucksShouldHaveDiffer
entStatsTest

UR_FIRETRUCKS_UNIQUE_SPEC Each firetruck of the four
should each have a specific
statistic that differs it from
the other three

Pass

6 ETShouldHaveUniqueSpecs
Test

UR_ET_UNIQUE_SPEC Each ET fortress should
have unique statistics that
make it different from other
fortresses

Fail

Pass

7 TruckWaterTankShouldRefill UR_FIRETRUCKS_REFILL,
SFR_ALLOWED_TO_REFILL,
SFR_CANCEL_REFILL,
SFR_REFILL_OVER_TIME,
SFR_REFILL_CONSTANT

Entering the range of the
fire station should trigger
the water refilling, assuming
the water tank is not full

Pass

8 TruckHealthShouldRepairTe
st

UR_FIRETRUCK_REPAIR,
SFR_ALLOWED_TO_REPAIR,
SFR_CANCEL_REPAIR

Entering the range of the
fire station should trigger
the repairing, assuming the
health bar is not full

Pass

9 ETPatrolsShouldDestroyFire
StationTest

UR_ET_DESTROYS_STATION,
UR_GAME_TIMER
SFR_PATROL_FIRESTATION
SFR_PATROL_DIFFICULTY

After 15 5 minutes of
gameplay, the ET patrols
should destroy the fire
station

Fail -
Not
Imple
ment
ed
Pass

10 GameShouldGetToGameOv
erScreenTest

UR_WIN_CONDITION,
UR_LOSS_CONDITION
SFR_ENDSCREEN

After destroying all ET
fortresses or losing all four
lives, the game should
automatically reach the
Game Over screen

Pass

11 GameShouldGetToGameOv
erScreenTest

SFR_MOVE_WHILE_DAMAGED Getting hit by a bullet
should not empair impair
the truck's movement
abilities

Pass

12 FireTruckShouldMoveWhile
WaterTankEmptyTest

SFR_MOVE_WHILE_EMPTY The fire truck should be able
to move even when the
water tank is empty

Pass

13 FireTruckShouldBeSelected
BeforeGameTest

SFR_FIRETRUCKS_STATS,
SFR_FIRETRUCKS_SELECTION
UR_FIRETRUCK_MIN_START

Before a new game is
initiated, the user should be
prompted with a fire truck
selection screen

Pass

14 ScreenShouldSwitchTest UR_MINIGAME,
UR_DIFFICULTY_LEVEL,
UR_CONTROLLER,
UR_INSTRUCTIONS,
UR_COLOUR_ACCESSIBILITY

The user should be able to
move between differnt
different screens without
system bugs or crashes

Pass

15 FireTruckShouldNotDriveOn
BuildingsTest

SFR_BUILDINGS
UR_DRIVE

The firetruck should not be
able to drive over buildings
tiles

Pass

16 FireTruckShouldNotDriveOn
RiversTest

SFR_RIVERS
UR_DRIVE

The firetruck should not be
able to drive over rivers tiles

Pass

17 HealthBarShouldAlwaysBeVi
sibleTest

SFR_HEALTH_BAR The health bar should be
visible at all point int time
during gameplay

Pass

18 WaterBarShouldAlwaysBeVi
sibleTest

SFR_WATER_SUPPLY_BAR The water bar should be
visible at all point int time
during gameplay

Pass

19 DifficultyHarder SFR_PATROL_HEALTH
SFR_PATROL_DIFFICULTY
SFR_PATROL_DAMAGE
UR_PATROL
UR_ET_IMPROVEMENT

The game should become
harder over time as the
fortresses become more
difficult to flood and the
number of ET Patrols
increase.

Pass

20 userShouldNotChangeFortres
sLocation

SFR_ET_LOCATIONS_NOT_CHA
NGEABLE
UR_ET_MIN_START

The game should not allow
the user to change locations
of the fortresses.

Pass

21 FireTruckCounterShouldAccur
atelyShowAmountAlive

SFR_DESTROYED_TRUCKS After a truck has been
destroyed, there should be
one less life on the heads-
up display. This means the
truck cannot be used again.
This should reset with
powerup of respawn.

Pass

22 MiniGameOption SFR_MINIGAME On the main menu of the
game you can click the
minigame option and start
playing the mini game.

Pass

23 ArrowKeysShouldControlTruc
kInCorrectDirection

SFR_ARROWKEYS The user should be able to
move the fire truck with
Arrow keys.

Pass

24 FlappyMiniGame UR_MINIGAME There should be a fully
functional mini game based
on flappy bird.

Pass

25 SavingShouldSaveFireTrucks
WithFullHealth

UR_SAVING
SFR_HEALTH_BAR

The user should be able to
save a game when all fire
trucks are at full health and
load it up with the same
health

Pass

26 SavingShouldSaveFireTrucks
WithDifferentHealth

UR_SAVING
SFR_HEALTH_BAR

The user should be able to
save a game when fire
trucks are at differing
health and load it up with
the same differing health

Pass

27 SavingShouldNotLoadDeadFir
eTrucks

UR_SAVING

The user should not be able
to reload a dead firetruck
that was dead at the time
of saving

Pass

28 SavingShouldSaveTheFullWat
erTank

UR_SAVING
SFR_WATER_SUPPLY_BAR

The user should be able to
save when fire trucks have
full water tanks and load
them up with the same
amount

Pass

29 SavingShouldSaveWaterWith
DifferingWaterTanks

UR_SAVING
SFR_WATER_SUPPLY_BAR

The user should be able to
save when fire trucks have
different water levels and
load them with the same
difference (this including
empty)

Pass

30 SavingShouldLoadTheCorrect
Difficulty

UR_SAVING
SFR_DIFFICULTY
UR_DIFFICULTY_LEVEL

The user should keep the
same difficulty (and
changes in stats) when
loading in a game

Pass

31 SelectDifficultyBeforeGame SFR_DIFFICULTY
UR_DIFFICULTY_LEVEL

The user should be able to
select between 3
difficulties before entering
the game. Easy, medium,
and hard

Pass

32 EasyModeShouldOnlyInclude
EasyStats

SFR_DIFFICULTY
UR_DIFFICULTY_LEVEL

The easy mode should only
load 2 UFOS, have twice
the health and water tank,
and twice the spawn rate
of UFOs (60 seconds)

Pass

33 MediumModeShouldOnlyIncl
udeMediumStats

SFR_DIFFICULTY
UR_DIFFICULTY_LEVEL

The easy mode should only
load 4 UFOS, have standard
health and water tank
amounts, and standard
spawn rate of UFOs (30
seconds)

Pass

34 HardModeShouldOnlyInclude
HardStats

SFR_DIFFICULTY
UR_DIFFICULTY_LEVEL

The hard mode should only
load 8 UFOS, have half the
health and water tank, and
half the spawn rate of UFOs
(15 seconds)

Pass

35 MinigameShouldBePlayable UR_MINIGAME

The minigame should be
playable once triggered
and has no bugs.

Pass

36 UserShouldBeAbleToGetOver
30InMinigame

UR_MINIGAME

The user should be able to
achieve over the threshold
for the maximum powerup

Pass

37 MinigameScoreBelowRangeG
ivesNoPowerUp

UR_MINIGAME
UR_POWER_UPS
SFR_POWER_UPS

After the player achieves a
score in a specific range
and then losses in the
minigame, if the score is
below 3 they should
receive no power-up

Pass

38 UnlimitedWaterPowerUpSho
uldChangeStatAndIcon

UR_POWER_UPS
SFR_POWER_UPS

When the user has the
Unlimited Water power-up
there should be no
decrease in water level and
the water icon should
appear

Pass

39 ShieldPowerUpShouldChange
StatAndIcon

UR_POWER_UPS
SFR_POWER_UPS

When the user has the
Shield power-up there
should be no decrease in
health and the shield icon
should appear

Pass

40 FreezeEnemyPatrolShouldCh
angeStatsAndIcon

UR_POWER_UPS
SFR_POWER_UPS

When the user has the
Freeze Enemy Patrol
power-up it should stop the
UFOs from moving on their
patrols and attacking, and
the icon should appear

Pass

41 RestoreTimeShouldAlterStats
AndIcon

UR_POWER_UPS
SFR_POWER_UPS

When the user has the
Restore Time power-up it
should reset their time and
score but not their progress
and the icon should appear

Pass

42 ResurrectDeadTruckShouldRe
storeATruck

UR_POWER_UPS
SFR_POWER_UPS

When the user has the
Resurrect Dead Truck
power-up it should restore
one of the dead fire trucks
and no icon should appear

Pass

43 ResurrectDeadTruckShouldN
otResurrectIfTrucksAreAlive

UR_POWER_UPS
SFR_POWER_UPS

When the user has the
Resurrect Dead Truck
power-up it should not
restore a truck if all are
alive and no icon should
appear

Pass

44 RainDanceShouldKillAllPatrols UR_POWER_UPS
SFR_POWER_UPS

When the user has the Rain
Dance power-up it should
‘rain’ and all patrols will die
and respawn in their
elected time.

Pass

45 PowerUpBoxesAreRandomAn
dReachable

 The power-up boxes in the
game should be spawned
at random in points that
are always reachable

Pass

Junit tests

Fire Station Test (Run with JUnit FireStationTest)

Test
ID

Test
function
name

Function
tested

Function Use Result
of test

Test description

JUFS1 fireStationShoul
dInitializeCorre

ctly()

getCentre() Returns location of
the fire station.

Pass Checks if the location of
the fire station is the
correct location.

JUFS2 dieShouldChangeT
heTextureOfTheFi

restation()

die() Kills the fire station. Pass Checks if the fire station
can be destroyed.

JUFS3 updateOnFireStat
ionShouldRepleni

shWater()

replenish() Repairs the fire
trucks health and
refills its water
supply.

Pass Checks if fire station can
repair and refill a fire
truck.

Fire Truck Test (Run with JUnit FireTruckTest)

Test
ID

Test function
name

Function tested Function
Use

Result
of test

Test description

JUFT1 Hitbox() getHitbox() Returns the
hitbox of the
fire truck.

Pass This is a test to check if
the hitbox generated is
the right size.

JUFT2 movementTest() getDirection() Returns the
direction the
fire truck is
facing.

Pass This is a test to check if
the directions of the
fire truck work
properly.

JUFT3 testInitialisation() getHealthPoints() Returns the
health of the
fire truck.

Pass This is a test to see if
the fire truck spawns
with correct amount of
health.

JUFT4 testRefill() getHealthPoints()
getCurrentWater()

Returns the
health of the
fire truck.
Returns the
water levels
of the fire
truck.

Pass This is a test to see if
the value of health and
the value of water
supply is correct after
being repaired and
refilled.

Fortress Test (Run with JUnit FortressTest)

Test
ID

Test function
name

Function
tested

Function Use Result
of test

Test description

JUF1 takeDamageShouldRe
sultInCorrectDecre

aseInHealth()

damage() Lowers the health of
a fortress by the
amount within the
brackets.

Pass This test checks if
damage to a fortress
lowers the health by a
correct amount.

JUF2 deathShouldChangeD
isplayableTheFortr

ess()

death() Removes a fortress
from being active and

Pass This test destroys a
fortress and checks if it

 displays it as a
destroyed state.

 is displayed as a
destroyed state.

JUF3 setPositionShouldS
etNewPositionAndRe
turnCorrectCentre(

)

getCentre() Returns the location
of the fortress.

Pass This test checks if the
fortress is in the right
location.

JUF4 setPositionShouldS
etTheCorrectPositi

on()

getPosition() Returns the position
of the fortress.

Pass The test checks if the
fortress is in the right
position. Was
combined with JUF3
but separated since
testing different
functions

Goose Test (Run with JUnit GooseTest)

Test
ID

Test function
name

Function
tested

Function Use Result
of test

Test description

JUG1 movementTest() getY() This returns
the y value of
the goose.

Pass The first part of the test
checks if the gravity works.
The y value should become
lower as time goes due to
gravity.
The second part of the test
checks if the jumping function
works, this time the y value
should be greater to
represent the spaceship going
up.
This checks that the gravity
works, the Y value should
become lower as time goes
due to gravity.

JUG2 hitboxShouldBeToScal
eOfGoose()

getHibox() Returns the
value of the
hitbox.

Pass This checks if the size of the
hitbox generated is correct.

JUD3 movementShouldChange
WithUpdatesJumping()

getY() This returns
the y value
of the
goose.

 This was part of JUG1 but
since they test partly
different aspects it is
cleaner if they are apart.
This check that the jumping
function works with the Y
value increasing if the
goose is going up

Pipe Test (Run with JUnit PipeTest)

Test
ID

Test function
name

Function
tested

Function Use Result
of test

Test description

JUP1 movementTest() getX() This function
returns the x
value of the
pipe.

Pass This test is to check if
the movement and the
gravity works within the
minigame.

JUP2 testIsRemove() isRemove() Returns true if
the pipe can be
removed.

Pass This is a test to check if
the pipe has been
removed.

JUP3 testGetHitboxes() getHitboxes() Returns the
hitboxes of the
pipe.

Pass This is a test to see if
the hitbox is the correct
size.

JUP4 testGameEnd() gameEnd() Returns whether
the goose
collides with the
pipe.

Pass This is a test to see
whether the minigame
has finished.

 GameObject Tests (Run with Junit GameObjectTest)

Test
ID

Test function
name

Function
tested

Function Use Result
of test

Test description

JUGO1 initializationShould
SetCorrectValuesToGa

meObject()

GameObjec
t() and
getPosition(
)

Returns a
value that is
used in
initialized
compared to
the same
value passed

Pass This test to ensure the
initialization of this class has
no problems.

JUGO2 changePositionShould
ChangeToCorrectNewPo

sition()

.getPosition
and
changePosit
ion()

Returns the
position and
check against
what it should
be changed to

Pass To ensure, at the highest level,
that changePosition() and
getPosition work with positive
values. All relative to current
position

JUGO3 changePositionShould
ChangeToNegativePosi

tion()

.getPosition
and
changePosit
ion()

Returns the
position and
check against
what it should
be changed to

Pass To ensure, at the highest level,
that changePosition() and
getPosition work with negative
values (needed for rendering
tricks) all relative to current
position

JUGO4 getCentreWillGiveCor
rectCentreWithStanda

rdPosition()

.getCentre Returns the
calculated
center value
to pre-
calculated
values

Pass To ensure that the calculation
method of getting the center
of an object works with a
standard position (both x and y
are positive)

JUGO5 getCentreWithNegativ
ePosition()

.getCentre
and
.getPosition

Returns the
calculated
center value
to pre-
calculated
values

Pass To ensure that the calculation
method of getting the center
of an object works with an
irregular position (with
negatives). It first ensures the
position did changed with a
assertEquals of Pos (so if this
test fails the developers can
see it’s the position not center)

JUGO6 setRotationShouldSet
Rotation()

getRotation
and
setRotation

Returns the
value of
rotation

Pass To ensure, at the highest level,
that the rotational setting is
not compromised.

JUGO7 setPositionShouldSet
VectorToExactInput()

setPosition Returns the
value of the
setPosition

Pass To ensure, at the highest level,
that setPositon is working as
intended. (Not the same as
changePosition)

JUGO8 setRemoveShouldSetRe
moveToInput()

isRemove()
and
setRemove

Returns the
value of
removed
which should
be the set
value

Pass To ensure that, at the highest
level, setRemove() works as
intended with no compromise.

JUGO9 dieShouldAlwaysSetRe
moveToTrue()

isRemove
and die()

Returns false
if die() works

Pass To ensure, at the highest level,
that die() works and will set
remove to true

 Entity Tests (Run with Junit EntityTest)

Test
ID

Test function
name

Function
tested

Function Use Result
of test

Test description

JUE1 initializationShouldS
etCorrectValuesToEnti

ty()

Entity() and
getMaxHeal
thPoints()

Returns a
value that is
used in
initialized
compared to
the same
value passed

Pass This test to ensure the
initialization of this class has
no problems.

JUE2 isAliveShouldReturnTr
ueWhenHealthIsAboveZe

ro()
()

isAlive Returns a
Boolean if the
entity has
health above
0

Pass Test that isAlive(), which
should 'true' if the Entity has
greater than 0 health points,
returns true when the
testEntity has its initialized
health

JUE3 applyDamageShouldDecr
easeHealthPointsByAmo
untGivenWhenEntityIsA

live()

isAlive,
applyDama
ge,
getHealthP
oints

applyDamage
minuses the
health points
by the given
int

Pass Test that applyDamage(),
which (after checking the
entity is alive) applies damage
to an entity

JUE4 applyDamageShouldNotI
ncreaseHealthWithNega

tiveInputs()

applyDama
ge,
getHealthP
oints

applyDamage
minuses the
health points
by the given
int

Pass Test that applyDamage(), does
not take negative damage that
would heal it.

JUE5 applyDamageShouldNotD
ecreaseHealthWithZero

Attack()

applyDama
ge,
getHealthP
oints

applyDamage
minuses the
health points
by the given
int

Pass Test that applyDamage()
allows for 0 damage and does
not remove HP.

JUE6 setMaxHealthPointsFor
DifficultyShouldSetBo

thHealth()

setMaxHealth
PointsForDif

ficulty

It sets both
the
maxHealthPoi
nts variable
and then the
current
HealthPoints
of that Entity

Pass Test that
setMaxHealthPointsForDifficul
ty() will set both the
healthPoints (current) and
themaxHealthPoints which is
needed for difficulty

JUE7 setMaxHealthPointsFor
DifficultyDoesNotSetN

egative()

setMaxHealth
PointsForDif

ficulty

It sets both
the
maxHealthPoi
nts variable
and then the
current
HealthPoints
of that Entity

Pass Test that
setMaxHealthPointsForDifficul
ty will not set negative health
points and will keep the
current values

JUE8 setMaxHealthPointsFor
DifficultyWillSetZero

()

setMaxHealth
PointsForDif

ficulty

It sets both
the
maxHealthPoi
nts variable
and then the
current
HealthPoints
of that Entity

Pass Test that
setMaxHealthPointsForDifficul
ty will set the value of
maxHealth and healthPoints to
zero

JUE9 addHealthShouldAddHea
lthPointsNotMax()

applyDama
ge,
getHealthP
oints,
addHealth

addHealth will
add a value to
the current
healthPoints

Pass Test that addHealth() adds
health to damaged entity - not
hitting the max healthPoints

JUE10 addHealthShouldNotAdd
HealthPointsOverMaxHe

althPoints()

applyDama
ge,
getHealthP
oints,
addHealth

addHealth will
add a value to
the current
healthPoints

Pass Test that addHealth() add
health but caps at
maxHealthValue

JUE11 setHealthPointsShould
SetNewHealthPointsBel

owMax()

getHealthP
oints,
setHealthPo
ints

setHealthPoin
ts will set the
current
healthPoints
to the passed
value

Pass Test that setHealthPoints()
sets a new health points that
are below max

JUE12 setHealthPointsShould
NotSetAboveMaxHealthP

oints()

getMaxHeal
thPoints,
setHealthPo
ints,
getHealthP
oints

setHealthPoin
ts will set the
current
healthPoints
to the passed
value

Pass Test that setHealthPoints()
does not set new health points

to above max health points

JUE13 applyDamageShouldSetR
emoveToTrueWhenBelowZ

ero()

isRemove,
applyDama
ge

applyDamage
minuses the
health points
by the given
int

Pass Test that applyDamage() sets
the entity to be dead to then
be removed

JUE14 applyDamageShouldSetI
sAliveToFalseWhenBelo

wZero()

applyDama
ge

applyDamage
minuses the
health points
by the given
int

Pass Test that applyDamage() sets
entity to be not alive

All the tests passing

Acceptance Testing

TEST ID REQUIREMENT ID FIT
CRITERION

RESULT EVIDENCE

A_1 SNFR_INSTRUCTIONS Instructions
should cover
all features of
the game and
how they
work.

Pass The game has a
manual.

A_2 SNFR_TARGET_AUDIENCE Game should
be based on
easy to
understand
rules, fast-
paced and
with relatively
wide range of
 bullets’
patterns
difficulties

Pass The game has
simple controls,
you only have
to use the
arrow keys to
play the game.
The map is
simple and the
shooting is
automatic.

A_3 SNFR_JARGON All user-facing
messages
shall be in
plain English
and will not
use technical
videogames
jargon

Pass The game tries
to use the least
amount of
words as it
possibly can so
it is easy to
understand.

A_4 SNFR_HIGHSCORES The game
should have a
local record of
the top high
scores.

Pass The game does
not currently
have a record of
high scores.

A_5 SNFR_ACCESSIBILITY There should
be a way to
modify the
colour scheme
in the for
people who
may be
colour-blind.

Fail No colour blind
mode
implemented

A_6 SNFR_MOBILE The game
should use an
engine which
allows you to
easily transfer
from pc to
mobile.

Pass The game is
programmed on
LIBGDX which
can be easily
transferred to
android.

A_7 SNFR_TIME You should be
able to finish
the game in
under 5
minutes.

Pass The game on
average took 3
minutes to play
for each user in
our group.

A_8 SNFR_SIMPLE The game
should use
arrow keys for
the controls
and the water
cannons
should be
automatic.

Pass The game uses
up down left
right arrow keys
to control the
game and if you
are in close
proximity to a
fortress it will
attack the
fortress.

A_9 SNFR_FORTRESS You are able
to destroy all
the fortresses
in the game.

Pass All the
fortresses can
be destroyed if
the fire station
is not
destroyed.

A_10 SNFR_SAVING

User being
able to save
their game in
its current
state in one
of 3 slots

Pass The game
state is saved
(position,
health and
water of
firetruck, etc)
and can be
loaded from
the same slot
it was saved
into

